The Interaction of Immune Priming with Different Modes of Disease Transmission
نویسنده
چکیده
Immune priming in invertebrates is most commonly described as an increase in survival (Roth et al., 2010) or the strength of an immune response (Moret, 2006) against a microbe to which the host has been previously exposed. Because priming alters epidemiologically relevant parameters like disease-induced mortality and recovery, priming is likely to impact the spread, and persistence of diseases in invertebrate populations. Early modeling efforts have explicitly incorporated priming into disease transmission frameworks by allowing exposed (Tidbury et al., 2012) or previously infected but recovered (Tate and Rudolf, 2012) individuals to transition into a primed compartment. There, they are less likely to become infected and infectious upon subsequent exposure, but may suffer reproductive or developmental costs stemming from the physiological costs of maintaining a primed immune response. Conflating infected and infectious states, however, obscures the impact of priming on the correlative and dynamical relationships (Day, 2003; Berenos et al., 2009) between parasite replication, pathology, and transmission. In directly transmitted infections, for example, parasite replication tends to be correlated with transmission, while pathology is often a byproduct of exploitation rather than a means of securing transmission (Roode et al., 2008). In fact, excessive pathology may curtail transmission by killing the host. In cases where peak pathology and peak transmission exhibit a time lag, an SEI (Susceptible-Exposed-Infectious)-type framework can be adapted to reflect different host fitness costs in infected and infectious states by allowing the latent “Exposed” compartment to experience pathology and disease-induced mortality. However, many pathogens of insects are obligate killers (Ebert and Weisser, 1997), meaning that they must kill the host in order to achieve transmission. There, the infected and infectious states are entirely separate, and pathology exerts a binary response on transmission (killing the host or not), although parasite replication will quantitatively affect transmission rates (Raymond et al., 2009) in hosts that do succumb. While priming is often modeled in the context of direct transmission (Tate and Rudolf, 2012; Tidbury et al., 2012; Best et al., 2013), many microbes against which priming has been successfully demonstrated, including Bacillus thuringiensis in beetles (Roth et al., 2010; Milutinović et al., 2013; Tate and Graham, 2015), Paenibacillus larvae in bees (Hernández López et al., 2014), and baculoviruses in moths (Tidbury et al., 2010), exhibit obligate killer dynamics in nature (Tate, 2016).To illustrate the impact of transmission mode on the stability of a disease-free equilibrium (DFE) in insect populations in the context of parameters thatmight reflect priming, we can consider an analytically tractable model of three ordinary differential equations:
منابع مشابه
Dynamic Model of Virus Transmission in Plants
In the study of viral diseases in plants, the immune response of the plant plays a basic role. In this paper, a mathematical model based on differential equations system with time delay for the immune response of the plant is introduced. As follows, the dynamical behavior of the model in equilibrium points is investigated. At the end, a plant in two different modes, organic and non- organic is ...
متن کاملThe Prevalence of Different Human Immunodeficiency Virus Transmission Routes and Knowledge about AIDS in Infected People with HIV in Sirjan
Background & Objective: The immune system of Patients with Acquired Immune Deficiency Syndrome (AIDS) is weekend because of Human immunodeficiency virus (HIV) infection, and they become vulnerable to several opportunistic and non-opportunistic pathogens and different carcinomas. IV drug abuse, sexual contact, occupational transmission, blood transfusion and maternal-fetal transmission are well ...
متن کاملThe effect of priming on physiological and biochemical traits of French bean (Phaseolus vulgaris) under cobalt chloride stress
Extended Abstract Introduction: The germination stage ensures the durability, establishment, and final yield of plants. The final density of plants per unit area is resulted when the planted seeds germinate fully and with adequate rate. Plants mainly undergo abiotic stresses that are a considerable constraint for agricultural production worldwide. Seed priming is one of the simplest and cheap...
متن کاملتغییرات ژنتیکی ویروس و فرار از سامانه ایمنی، چالشهای پیشرو علیه آنفلوآنزا: مقاله مروری
The spread of influenza viruses in multiple bird and mammalian species is a worldwide serious threat to human and animal populations' health and raise major concern for ongoing pandemic in humans. Direct transmission of the avian viruses which have sialic acid specific receptors similar to human influenza viruses are a warning to the emergence of a new mutant strain that is likely to share mole...
متن کاملPriming Hepatitis B Surface (HBsAg)- and Core Antigen (HBcAg)-Specific Immune Responses by Chimeric, HBcAg with a HBsAg ‘a’ Determinant
We developed an immunogen to stimulate multivalent immunity against hepatitis B surface antigen (HBsAg) and hepatitis B core antigens (HBcAg). Immune responses specific for both HBsAg and HBcAg play an important role in controlling the infection. HBsAg-specific antibodies mediate elimination of virions at an early stage of infection and prevent the spread of virus. The immunogen was constructed...
متن کامل